Quasiharmonic $L^{p}$ functions and biharmonic degeneracy
نویسندگان
چکیده
منابع مشابه
On The Mean Convergence of Biharmonic Functions
Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...
متن کاملBiharmonic Green Functions on Homogeneous Trees
The study of biharmonic functions under the ordinary (Euclidean) Laplace operator on the open unit disk D in C arises in connection with plate theory, and in particular, with the biharmonic Green functions which measure, subject to various boundary conditions, the deflection at one point due to a load placed at another point. A homogeneous tree T is widely considered as a discrete analogue of t...
متن کاملLp Computable Functions and Fourier Series
This paper studies how well computable functions can be approximated by their Fourier series. To this end, we equip the space of L-computable functions (computable Lebesgue integrable functions) with a size notion, by introducing L-computable Baire categories. We show that L-computable Baire categories satisfy the following three basic properties. Singleton sets {f} (where f is L-computable) ar...
متن کاملon the mean convergence of biharmonic functions
let denote the unit circle in the complex plane. given a function , one uses t usual (harmonic) poisson kernel for the unit disk to define the poisson integral of , namely . here we consider the biharmonic poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . we then consider the dilations for and . the ...
متن کاملImproved dynamic regret for non-degeneracy functions
Recently, there has been a growing research interest in the analysis of dynamic regret, which measures the performance of an online learner against a sequence of local minimizers. By exploiting the strong convexity, previous studies have shown that the dynamic regret can be upper bounded by the path-length of the comparator sequence. In this paper, we illustrate that the dynamic regret can be f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tohoku Mathematical Journal
سال: 1980
ISSN: 0040-8735
DOI: 10.2748/tmj/1178229603